Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna.
نویسندگان
چکیده
The objective of the study was the estimation of the effect of surfactants on the toxicity of ZnO, TiO2 and Ni nanoparticles (ENPs) towards Daphnia magna. The effect of hexadecyltrimethylammonium bromide (CTAB), triton X-100 (TX100) and 4-dodecylbenzenesulfonic acid (SDBS) was tested. The Daphtoxkit F test (conforming to OECD Guideline 202 and ISO 6341) was applied for the toxicity testing. Both the surfactants and the ENPs were toxic to D. magna. The addition of ENPs to a solution of the surfactants caused a significant reduction of toxicity of ENPs. The range of reduction of the toxicity of the ENPs depended on the kind of the ENPs and their concentration in the solution, and also on the kind of surfactant. For nano-ZnO the greatest reduction of toxicity was caused by CTAB, while for nano-TiO2 the largest drop of toxicity was observed after the addition of TX100. In the case of nano-Ni, the effect of the surfactants depended on its concentration. Most probably the reduction of toxicity of ENPs in the presence of the surfactants was related with the formation of ENPs aggregates that inhibited the availability of ENPs for D. magna.
منابع مشابه
Toxicity Assessment of Some Conventionally Manufactured Nanoparticles to Daphnia Magna
Background and purpose: Nanoparticles (NPs) are used in different industries, including electronics, pharmaceuticals, cosmetics, healthcare, and environmental processes. Therefore, it is necessary to evaluate their toxicity in the aquatic environment. Materials and methods: The acute toxicity of six different kinds of nano-sized particulates (SiO2, Fe2O3, Al2O3, TiO2, ZnO, and MgO) to Daphnia ...
متن کاملToxicity of nanoZnO in Daphnia magna fed with ZnO containing Chlorella vulgaris and Scenedesmus dimorphus algae
Nano ZnO is currently used in the rubber, electronics, electrical appliances, enamel, cosmeticsand medical industry. Whereas most studies have used the ecological toxicity of nanoparticles, the toxic effects of nanoparticles in diet is not extensively explored. Because the algaeare at the base of the food chain, any change in their density, biomass and population, wouldaffect the food chain in ...
متن کاملAcute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus
Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...
متن کاملThe influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
The present study investigated changes in suspension stability and ecotoxicity of engineered nanoparticles (ENPs) by addition of Suwannee River natural organic matter and aging of stock and test suspensions prior to testing. Acute toxicity tests of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2 ) ENPs with Daphnia magna were carried out following Organisation for Economic Co-operatio...
متن کاملEvaluation of silver nanoparticles toxicity in Daphnia magna: Comparison of chemical and green biosynthetic productions
Recently nanoparticles, particularly silver nanoparticles, are broadly used in industry, hence the contamination of the environment with AgNPs has caused considerable concern. In this study, the toxicity of biosynthetic nanosilver produced by two macroalgae: Sargassum boveanum and Ulva flexuosa extracts were compared with chemical nanosilver in Daphnia magna. Size and quality of nanoparticles e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecotoxicology
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2015